RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1982 Volume 115, Pages 251–263 (Mi znsl4057)

This article is cited in 2 papers

Solutions of the stationary Navier–Stokes system of equations with an infinite Dirichlet integral

V. A. Solonnikov


Abstract: In unbounded domains $\Omega$ of the three-dimensional Euclidean space, having several exits $\Omega_i$ at infinity of a sufficiently general form, one finds the solution $\vec v(x)$ of the stationary Navier–Stokes system, equal to zero on the boundary of the domain $\Omega,$ having arbitrary flow rates $\alpha_i$ through each exit $\Omega_i$, $i=1,\dots,m$ ($\sum_{i=1}^m\alpha_i=0$), and having an unbounded Dirichlet integral $\int_\Omega|\vec v_x|^2\,dx=+\infty$. One gives sufficient conditions for the existence of a solution.

UDC: 517.9


 English version:
Journal of Soviet Mathematics, 1985, 28:5, 792–799

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025