RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1985 Volume 141, Pages 5–17 (Mi znsl4085)

This article is cited in 2 papers

Hankel operators and problems of best approximation of unbounded functions

A. L. Vol'berg, V. A. Tolokonnikov


Abstract: For each function $f$, $f\in VMO$, there exist a unique function $f_0$, analytic in the circle $\mathbb D$ and such that $\|f-f_0\|_\infty=\inf\{\|f-g\|_\infty\colon g\in VMO_A\}$. We define the operator of best approximation (nonlinear) $\mathcal A$, $\mathcal Af=f_0$, $f\in VMO$. In the paper one considers the question of the preservation of a class under the action of the operator i.e. finding the classes $X$, $X\subset VMO$, $\mathcal AX\subset X$. One investigates the classes $X$ containing unbounded functions. It is proved that if $P_-X$ is the space of the symbols of the Hankel operators from a Banach space $E$ of functions into the Hardy space $H^2$, then $\mathcal AX\subset X$. For $E$ one can take “almost” any space.

UDC: 517.5


 English version:
Journal of Soviet Mathematics, 1987, 37:5, 1269–1275

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024