RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1985 Volume 141, Pages 18–38 (Mi znsl4086)

This article is cited in 12 papers

Martingale transforms and uniformly convergent orthogonal series

S. V. Kislyakov


Abstract: S. A. Vinogradov's method is adapted to prove for certain orthogonal product systems the analogue of his inequality concerning the trigonometric system. For example, for the Walsh system $W=\{w_n\}$ the following holds. Let $U(W)$ be the space of functions with a uniformly convergent Walsh–Fourier series. Then, for every functional $F$ on $U(W)$ we have the inequality
$$ \operatorname{mes}\Bigl\{\sup_N\Bigl|\sum_{n\le2N}F(w_n)w_n\Bigr|>\lambda\Bigr\}\le\mathrm{const}\,\lambda^{-1}\|F\|_{U(W)^*}.$$


UDC: 287.71:70


 English version:
Journal of Soviet Mathematics, 1987, 37:5, 1276–1287

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024