RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 387, Pages 167–188 (Mi znsl4102)

This article is cited in 3 papers

Effective construction of a nonsingular in codimension one algebraic variety over a zero-characteristic ground field

A. L. Chistov

St. Petersburg Department of Steklov Mathematical Institute of the Academy of Sciences of Russia, St. Petersburg, Russia,

Abstract: Let $k$ be a field of zero-characteristic finitely generated over a primitive subfield. Let $f$ be a polynomial of degree at most $d$ in $n$ variables with coefficients from $k$ and irreducible over an algebraic closure $\overline k$. Then we construct a nonsingular in codimension one algebraic variety $V$ and a finite birational isomorphism $V\to\mathcal Z(f)$ where $\mathcal Z(f)$ is the hypersurface of all common zeroes of the polynomial $f$ in the affine space. The working time of the algorithm for constructing $V$ is polynomial in the size of the input.

Key words and phrases: algebraic varieties, nonsingular in codimension one, effective algorithms, reduction to the case of algebraic curves.

UDC: 518.5+513.6

Received: 01.01.2010

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2011, 179:6, 729–740

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024