RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 389, Pages 34–57 (Mi znsl4117)

This article is cited in 6 papers

On the norms of generalized translation operators generated by Jacobi–Dunkl operators

O. L. Vinogradov

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: We establish an integral representation and improve the norm estimate for the generalized translation operators generated by Jacobi–Dunkl operators
$$ \Lambda_{\alpha,\beta}f(x)=f'(x)+\frac{A_{\alpha,\beta}'(x)}{A_{\alpha,\beta}(x)}\,\frac{f(x)-f(-x)}2, $$
where
$$ A_{\alpha,\beta}(x)=(1-\cos x)^\alpha(1+\cos x)^\beta|\sin x|, $$
in the spaces $L_p[-\pi,\pi]$ with the weight $A_{\alpha,\beta}$. For $\alpha\ge\beta\ge-\frac12$ we prove that these norms do not exceed $2$.

Key words and phrases: Jacobi polynomials, generalized translation operator, Jacobi–Dunkl operator.

UDC: 517.5

Received: 11.05.2011


 English version:
Journal of Mathematical Sciences (New York), 2012, 182:5, 603–616

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025