RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 389, Pages 101–112 (Mi znsl4120)

This article is cited in 1 paper

Application of a Bernstein-type inequality to rational interpolation in the Dirichlet space

R. Zarouf

CMI-LATP, UMR 6632, Université de Provence, Marseille, France

Abstract: We prove a Bernstein-type inequality involving the Bergman and Hardy norms, for rational functions in the unit disk $\mathbb D$ having at most $n$ poles all outside of $\frac1r\mathbb D$, $0<r<1$. The asymptotic sharpness of this inequality is shown as $n\to\infty$ and $r\to1^-$. We apply our Bernstein-type inequality to an efficient Nevanlinna–Pick interpolation problem in the standard Dirichlet space, constrained by the $H^2$-norm.

Key words and phrases: Bernstein-type inequality, Bergman space, Besov space.

UDC: 517.547

Received: 28.04.2011

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2012, 182:5, 639–645

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025