RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 389, Pages 232–251 (Mi znsl4127)

New correction theorems in the light of a weighted Littlewood–Paley–Rubio de Francia inequality

D. M. Stolyarov

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: We prove the following correction theorem: every function $f$ on the circumference $\mathbb T$ that is bounded by an $\alpha_1$-weight $w$ (this means that $Mw^2\le Cw^2$) can be modified on a set $e$ with $\int_ew<\varepsilon$ so that the quadratic function built up from $f$ with the help of an arbitary sequence of nonintersecting intervals in $\mathbb Z$ will not exceed $C\log(\frac1\varepsilon)w$.

Key words and phrases: quadratic function, correction theorem, Muckenhoupt condition.

UDC: 517.5

Received: 01.03.2011


 English version:
Journal of Mathematical Sciences (New York), 2012, 182:5, 714–723

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025