RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1985 Volume 141, Pages 56–71 (Mi znsl4166)

The Adamyan–Arov–Krein theorem: Vectorial variant

S. R. Treil


Abstract: One obtains the following description of the $s$–numbers of the vectorial Hankel operators $H_{\varphi}$, $\varphi\in L^{\infty}(E_1,E_2)$.
Theorem 1. {\it $s_n(H_{\varphi})=\inf\{\|H_{\varphi}-H_{\psi}\|:\operatorname{rank} H_{\psi}\le n\}$}.
The theorem generalizes the known Adamyan–Arov–Krein result and in the case $\min(\dim E_1,\dim E_2)<\infty$ has been proved by Ball and Helton. One obtains a constructive description of the Hankel operators of finite rank and one gives a formula for the rank of such an operator.

UDC: 517.98


 English version:
Journal of Soviet Mathematics, 1987, 37:5, 1297–1306

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024