RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1983 Volume 126, Pages 170–179 (Mi znsl4204)

This article is cited in 2 papers

Invariant subspaces for Toeplitz operators

V. V. Peller


Abstract: The article is devoted to the invariant subspace problem for Toeplitz operators.
Let $\Gamma$ be a Lipschitz arc on the complex plane, $f$ be a non-constant continuous function on the unit circle. If there exists an open disc $D$ such that $f(\mathbb T)\cap\Gamma\cap D\ne\varnothing$, $f(\mathbb T)\cap(\bar D\setminus\Gamma)\ne\varnothing$ and if the modulus of continuity $\omega_f$ of $f$ satisfies the inequality
$$ \int\limits_\bigcirc\frac{\omega_f(t)}{t\log\frac1t}\,dt<+\infty, $$
then non-trivial hyperinvariant subspaces for the Toeplitz operator $T_f$ on the Hardy class $H^2$ are proved to exist.
For the proof of this result the Lubich–Matsaev theorem is used.

UDC: 517.5



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025