RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1983 Volume 126, Pages 196–201 (Mi znsl4207)

Interpolating Blaschke products and ideals of the algebra $H^\infty$

V. A. Tolokonnikov


Abstract: For a function $f$ in $H^\infty(l^2)$ the ideals $I(f)=\{h\in H^\infty:h=\sum_{i=1}^\infty f_ig_i, g\in H^\infty(l^2)\}$ and $J(f)=\{h\in H^\infty:|h(z)|\leqslant c\|f(z)\|_2, z\in\mathbb D\}$ are considered. The functions $f$ for which there exists an interpolating Blaschke product in $I(f)$ (or $J(f)$) are characterized. Moreover there is given a characterization of functions $u$ in $H^\infty$ for which
$$ f\in H^\infty(l^2), u\in J(f)\Rightarrow u\in I(f). $$
(In the case $u=1$ the latter implication is the Carleson Corona theorem).

UDC: 517.5



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025