RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1983 Volume 127, Pages 169–180 (Mi znsl4219)

This article is cited in 4 papers

The asymptotic of spectrum of the Maxwell's operator.

Yu. G. Safarov


Abstract: The asymptotic formula $N^\pm(\lambda)=(3\pi^2)^{-1}\operatorname{mes}\Omega\cdot\lambda^3+O(\lambda^2)$ is obtained for distribution's functions of positive and negative eigenvalues of the operator $\begin{pmatrix}0 & i\operatorname{rot} \\ -i\operatorname{rot} & 0\end{pmatrix}$ in the domain $\Omega$ with smooth boundary. It is proved under additional assumptions about properties of the geodesic billiards in that $N^\pm(\lambda)=(3\pi^2)^{-1}\operatorname{mes}\Omega\cdot\lambda^3+O(\lambda^2)$.

UDC: 517.43



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025