RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1985 Volume 141, Pages 176–182 (Mi znsl4221)

This article is cited in 1 paper

Lipschitz functions of self-adjoint operators in perturbation theory

J. B. Farforovskaja


Abstract: Let $A$ be a self-adjoint operator in a Hilbert space. In order that for each differentiable function $f$ and for each self-adjoint operator $B$ one should have the estimate $\|f(B)-f(A)\|\le c_f\|B-A\|$ it is necessary and sufficient that the spectrum of the operator $A$ be a finite set. If $m$ is the number of points of the spectrum of the operator $A$, then for the constant $c_f$ one can take $8(\log_2m+2)^2[f]$, where $[f]$ is the Lipschitz constant of the function $f$.

UDC: 517.984


 English version:
Journal of Soviet Mathematics, 1987, 37:5, 1365–1368

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024