RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 227, Pages 5–8 (Mi znsl4257)

This article is cited in 1 paper

Computation of the number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a sum of squares

G. V. Abramov, P. M. Vinnik

Saint-Petersburg State University

Abstract: The number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a sum of invertible squares is computed, provided that each square occurs in the sum no more than a fixed number of times. For prime $d$ an exhaustive answer is given in terms of the class number and the fundamental unit of the real quadratic field $\mathbb Q(\sqrt d)$. Bibliography: 5 titles.

UDC: 511.23

Received: 15.01.1995


 English version:
Journal of Mathematical Sciences (New York), 1998, 89:2, 1079–1081

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024