RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 227, Pages 15–22 (Mi znsl4259)

On a maximal torus in subgroups of a general linear group

Z. I. Borevich, A. A. Panin

Saint-Petersburg State University

Abstract: Let $k$ be a field, $K/k$ a finite extension of it of degree $n$. We denote $G=\operatorname{Aut}(_kK)$, $G_0=\operatorname{Aut}(_kK)$ and fix in $K$ a basis $\omega_1,\dots,\omega_n$ over $k$. In this basis, to any automorphism group of $_kK$ there corresponds a matrix group, which is denoted by the same symbol.
Let $G'\le G$. In this paper, the conditions under which $G'\cap G_0$ is a maximal torus in $G'$ are studied. The calculation of $N_{G'}(G'\cap G_0)$ is carried out, provided that thee conditions are fulfilled. The case $G'=\operatorname{SL}(_kK)$ is of particular interset. It is known that for Galois extensions and for extensions of algebraic number fields, $G'\cap G_0$ is a maximal torus in $G'$. Bibligraphy: 2 titles.

UDC: 512.4

Received: 14.01.1995


 English version:
Journal of Mathematical Sciences (New York), 1998, 89:2, 1087–1091

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024