RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 227, Pages 66–73 (Mi znsl4265)

A local duality theorem for categories of modules

M. B. Zvyagina

Saint-Petersburg State University

Abstract: Let $\Lambda$ be an associative ring with identity and let $_\Lambda\mathfrak M$ be the category of left unitary $\Lambda$-modules. A subcateqory $\mathcal M$ of the category $_\Lambda\mathfrak M$ is said to be small if the pairwise nonisomorphic objects of $\mathcal M$ form a set. The main result of this paper consists of the fact that for every small full subcategory $\mathcal M$, there exists a ring $\Gamma$ such that $\mathcal M$ is dual to a small full subcategory of the category $_\Gamma\mathfrak M$. Some applications of this result are indicated. Bibliography: 3 titles.

UDC: 512.58

Received: 10.03.1995


 English version:
Journal of Mathematical Sciences (New York), 1998, 89:2, 1122–1126

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024