Abstract:
The existence of infinite sets of primes which can be repesented as the sets of positive values of some polynomials in a small number of variables is discussed. (All variables range over positive integers.) It is proved (noneffectively) that there exists such a set, which has a representation with eight variables. This number of variables is smaller than in the best universal construction known today, which is ten. Also, some improvements of well-known technical lemmas are given. Bibliography: 16 titles.