RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 221, Pages 58–66 (Mi znsl4295)

This article is cited in 21 papers

Continuous dependence of attractors on the shape of domain

A. V. Babina, S. Yu. Pilyuginb

a Московский институт инженеров транспорта
b С.-Петербургский государственный университет

Abstract: Let $\Omega_0$ be a bounded domain in $\mathbb R^n$, let $\mathcal G$ be a family of diffeomorphisms, and let $\Omega_G=G(\Omega_0)$ for $G\in\mathcal G$. Denote by $\Sigma_t(G)$ the semigroup generated by a fixed parabolic PDE with Dirichlet boundary conditions on the boundary of $\Omega_G$. Let $A_G$ be the global attractor $\Sigma_t(G)$. Conditions are given under which a generic diffeomorphism $G\in\mathcal G$ is a continuity point of the map $G\mapsto A_G$. Bibliography: 12 titles.

UDC: 517.9

Received: 05.01.1995

Language: English


 English version:
Journal of Mathematical Sciences (New York), 1997, 87:2, 3304–3310

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024