RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 221, Pages 83–113 (Mi znsl4298)

This article is cited in 3 papers

Maximum modulus estimates for generalized solutions of doubly nonlinear parabolic equations

A. V. Ivanov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Maximum modulus estimates are obtained for generalized solutions of doubly nonlinear parabolic equations (DNPE). The equation
\begin{equation*} \partial u/\partial t-\operatorname{div}\{|u|^l|\nabla u|^{m-2}\nabla u\}=0,\qquad m>1,\quad l>1-m, \tag{1} \end{equation*}
is a prototype of a DNPE. Exact conditions on the parameters $m$ and $l$ are found that guarantee a local $L_\infty$-estimate for generalized solutions of Eq. (1), namely,
\begin{equation*} \frac{\sigma+1}{\sigma+2}>\frac1m-\frac1n,\quad\sigma=\frac l{m-1},\quad m>1,\quad l>1-m. \tag{2} \end{equation*}
Global maximum modulus estimates for generalized solutions of the first initial boundaty-value problem for a DNPE are given if the parameters $m$ and $l$ satisfy condition (2). Bibliography: 13 titles.

UDC: 517.9

Received: 01.02.1995


 English version:
Journal of Mathematical Sciences (New York), 1997, 87:2, 3322–3342

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024