RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 221, Pages 127–144 (Mi znsl4300)

This article is cited in 5 papers

Flows generated by symmetric functions of the eigenvalues of the Hessian

N. Ivochkinaa, O. Ladyzhenskayab

a С.-Петербургский государственный архитектурно-строительный университет
b С.-Петербургское отделение Математического института им. В. А. Стеклова РАН

Abstract: The global unique solvability of the first initial-boundary value problem for fully nonlinear equations of the form
$$ -u_t+f(\lambda_1[u],\dots,\lambda_n[u])=g $$
is proved. Here, $\lambda_i[u]$, $i=1,\dots,n$, are eigenvalues of the Hessian $u_{xx}$ and $f$ is a symmetric function satisfying some conditions. Bibliography: 7 titles.

UDC: 517.9

Received: 10.04.1995

Language: English


 English version:
Journal of Mathematical Sciences (New York), 1997, 87:2, 3353–3365

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024