RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 221, Pages 185–207 (Mi znsl4303)

This article is cited in 7 papers

Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations

A. P. Oskolkov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: In this paper, we study some nonlocal problems for the Kelvin–Voight equations (1) and the penalized Kelvin–Voight equations (2): the first and second initial boundary-value problems and the first and second time periodic boundary problems. We prove that these problems have global smooth solutions of the class $W^1_\infty(\mathbb R^+;W_2^{2+k}(\Omega))$, $k=1,2,\dots$; $\Omega\subset\mathbb R^3$. Bibliography: 25 titles.

UDC: 517.9

Received: 01.02.1995


 English version:
Journal of Mathematical Sciences (New York), 1997, 87:2, 3393–3408

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024