RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 222, Pages 5–17 (Mi znsl4308)

This article is cited in 17 papers

On the existence of nontangential boundary values of pseudocontinuable functions

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $\theta$ be an inner functions, let $\theta^*(H^2)=H^2\ominus\theta H^2$, and let $\mu$ be a finite Borel measure on the unit circle $\mathbb T$. Our main purpose is to prove that, if every function $f\in\theta^*(H^2)$ can be defined $\mu$-almost everywhere on $\mathbb T$ in a certain (weak) natural sense, then every function $f\in\theta^*(H^2)$ has finite nontangential boundary values $\mu$-almost everywhere on $\mathbb T$. A similar result is true for the $\mathcal L^p$-analog of $\theta^*(H^2)$ ($p>0$). Bibliography: 17 titles.

UDC: 517.5

Received: 11.01.1995


 English version:
Journal of Mathematical Sciences (New York), 1997, 87:5, 3781–3787

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024