RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 222, Pages 45–77 (Mi znsl4310)

This article is cited in 24 papers

Multiplication and division in the space of analytic functions with area integrable derivative, and in some related spaces

S. A. Vinogradov

Saint-Petersburg State University

Abstract: We study the possibility of multiplication and division by inner functions (in the sense of Beurling) in $A^1_p$ ($0<p<2$), the space of functions analytic in the unit disk $\mathbb D$ and such that
$$ \int_\mathbb D|f'(z)|^p(1-|z|)^{p-1}\,dm_2(z)<+\infty $$
($m_2$ is the planar Lebesgue measure). In particular, a simple description is given for multipliers of the space $A^1_p$ for $p\in(0,2)$. Conditions on zeros for the Blaschke products are given under which a product is a multiplier or a divisor in $A^1_p$ ($0<p<2$). It is shown that the singular function $\exp\frac{z+1}{z-1}$ is a multiplier but not a divisor in the space $A^1_p$ ($0<p<2$). Bibliography: 17 titles.

UDC: 517.5

Received: 01.09.1994


 English version:
Journal of Mathematical Sciences (New York), 1997, 87:5, 3806–3827

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025