RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 222, Pages 78–123 (Mi znsl4311)

On sets of uniqueness for harmonic functions in the unit circle

Yu. Ya. Vymenets

Saint-Petersburg State University

Abstract: The results of this paper show that the structure of sets mentioned in the title is not trivial. For example, it is shown that there exist countable sets of uniqueness for logarithmic potential, i.e., closed countable subsets $E$ of the unit circle $\mathbb T$ such that
$$ f\in C(\mathbb T),\ f\mid_E=0,\ U^f\mid_E=0\ \Rightarrow f\equiv0. $$
Here $U^f(z)=\frac1\pi\int_0^{2\pi}f(e^{i\theta})\log\frac1{|z-e^{i\theta}|}\,d\theta$. On the other hand, it is shoum that every countable porous closed subset of $\mathbb T$ is a nonuniqueness set. Bibliography: 9 titles.

UDC: 517.5

Received: 17.02.1995


 English version:
Journal of Mathematical Sciences (New York), 1997, 87:5, 3828–3858

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025