RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 222, Pages 203–221 (Mi znsl4315)

This article is cited in 9 papers

The Green function for the weighted biharmonic operator $\Delta(1-|z|^2)^{-\alpha}\Delta$, and factorization of analytic functions

S. M. Shimorin

Saint-Petersburg State University

Abstract: An explicit integral formula is obtained for the Green function of the weighted biharmonic operator $\Delta(1-|z|^2)^{-\alpha}\Delta$ in the unit disc of the complex plane for the case $\alpha\in(-1,0)$. The formula shows the positivity of the Green function. This is a basis for a theorem on factorization of analytic functions in the weighted Bergman spaces with the weights $w(z)=(1-|z|^2)^\alpha$ as product of a nonvanishing function and a function of special form responsible for the zeros. Bibliography: 16 titles.

UDC: 517.5

Received: 01.09.1994


 English version:
Journal of Mathematical Sciences (New York), 1997, 87:5, 3912–3924

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025