RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 223, Pages 108–119 (Mi znsl4359)

This article is cited in 2 papers

Representation theory

Transitive groups with irreducible representations of bounded degree

S. A. Evdokimova, I. N. Ponomarenkob

a St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: A well-known theorem of Jordan states that there ezists a function $J(d)$ of a positive integer $d$ for which the following holds: if $G$ is a finite group having a faithful linear representation over $\mathbb C$ of degree $d$, then $G$ has a normal Abelian subgroup $A$ with $[G:A]\le J(d)$. We show that if $G$ is a transitive permutation group and $d$ is the maximal degree of irreducible representations of $G$ entering its permutation representation, then there exists a normal solvable subgroup $A$ of $G$ such that $[G:A]\le J(d)^{\log_2d}$. Bibliography: 7 titles.

UDC: 519.62

Received: 15.05.1995


 English version:
Journal of Mathematical Sciences (New York), 1997, 87:6, 4046–4053

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024