RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 223, Pages 120–126 (Mi znsl4366)

This article is cited in 7 papers

Dynamical systems

The adic realizations of the ergodic actions with the homeomorphisms of the Markov compact and the ordered Bratteli diagrams

A. M. Vershik

С.-Петербургское отделение Математического института им. В. А. Стеклова РАН

Abstract: For any ergodic transformation $T$ of the Lebesgue space $(X,\mu)$ it is possible to introduce the topology $\tau$ into $X$ such that
a) with provided topology $X$ becomes the totally disconnected compact (Cantor set) with the structure of a Markov compact and $\mu$ becomes a Borel Markov measure.
b) $T$ becomes a minimal strictly ergodic homeomorphism of $(X,\tau)$;
c) orbit partition of $T$ is the tail partition of the Markov compact upto two classes of the partition.
The structure of Markov compact is the same as a structure of the pathes in the Bratteli diagram of some $AF$-algebra. Bibliography: 19 titles.

UDC: 517.4

Received: 01.03.1995

Language: English


 English version:
Journal of Mathematical Sciences (New York), 1997, 87:6, 4054–4058

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025