RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 223, Pages 162–180 (Mi znsl4386)

This article is cited in 9 papers

Combinatorial and algorithmic methods

Stick breaking process generated by virtual permutations with Ewens distribution

S. V. Kerova, N. V. Tsilevichb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Saint-Petersburg State University

Abstract: Given a sequence $x$ of points in the unit interval, we associate with it a virtual permutation $w=w(x)$ (that is, a sequence $w$ of permutations $w_n\in\mathfrak S_n$ such that for all $n=1,2,\dots$, $w_{n-1}=w'_n$ is obtained from $w_n$ by removing the last element $n$ from its cycle). We introduce a detailed version of the well-known stick breaking process generating a random sequence $x$. It is proved that the associated random virtual permutation $w(x)$ has a Ewens distribution. Up to subsets of zero measure, the space $\mathfrak S_n=\varprojlim\mathfrak S_n$ of virtual permutations is identified with the cube $[0,1]^\infty$. Bibliography: 8 titles.

UDC: 519.217+517.986

Received: 15.04.1995


 English version:
Journal of Mathematical Sciences (New York), 1997, 87:6, 4082–4093

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024