This article is cited in
1 paper
On classes of functions subharmonic in $\mathbb{R}^m$ which are bounded on certain sets
B. Ya. Levin,
V. N. Logvinenko
Abstract:
Let
$Z_j$ be Euclidean spaces of vectors
$z_j=(z_{j,1},\dots,z_{j,n_j+1})$,
$Z=\bigoplus\limits_{j=1}^pZ_j$, $X=\bigoplus\limits_{j=1}^p(z_{j,1},\dots,z_{j,n_j})$. A function
$u:Z\to\mathbb{R}_+$,
$u\not\equiv0$, is called logarithmically
$p$-subharmonic,
if
$\log u(z)$ is upper semicontinuous and for any
$j$ and for
any
$z_k$,
$k\ne j$, either the function
$z_j\to\log u(z_1,\dots,z_p)$
is subharmonic or
$\log u(z_1,\dots,z_p)\equiv-\infty$.
For such functions
$u$ that satisfy the growth estimate
$$
\log u(z)\leqslant\sigma\prod_{j=1}^p(1+|z_{j,n_j+1}|)+N\left(\sum_{\substack{1\leqslant j\leqslant p\\ 1\leqslant k\leqslant n_j}} z_{j,k}^2\right)^{1/2}+c,\quad \sigma, N\geqslant0,\quad c\in\mathbb{R},
$$
theorems are proved about the equivalence of
$L^\infty(L^q)$-norm
of restrictions
$u\mid X$ and
$u\mid E$ for some relatively dense
subset
$E$ of
$X$.
These theorems generalize well-known results of Cartwright
and Plancherel–Polya.
UDC:
517.55