RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1989 Volume 170, Pages 157–175 (Mi znsl4459)

This article is cited in 1 paper

On classes of functions subharmonic in $\mathbb{R}^m$ which are bounded on certain sets

B. Ya. Levin, V. N. Logvinenko


Abstract: Let $Z_j$ be Euclidean spaces of vectors $z_j=(z_{j,1},\dots,z_{j,n_j+1})$, $Z=\bigoplus\limits_{j=1}^pZ_j$, $X=\bigoplus\limits_{j=1}^p(z_{j,1},\dots,z_{j,n_j})$. A function $u:Z\to\mathbb{R}_+$, $u\not\equiv0$, is called logarithmically $p$-subharmonic, if $\log u(z)$ is upper semicontinuous and for any $j$ and for any $z_k$, $k\ne j$, either the function $z_j\to\log u(z_1,\dots,z_p)$ is subharmonic or $\log u(z_1,\dots,z_p)\equiv-\infty$.
For such functions $u$ that satisfy the growth estimate
$$ \log u(z)\leqslant\sigma\prod_{j=1}^p(1+|z_{j,n_j+1}|)+N\left(\sum_{\substack{1\leqslant j\leqslant p\\ 1\leqslant k\leqslant n_j}} z_{j,k}^2\right)^{1/2}+c,\quad \sigma, N\geqslant0,\quad c\in\mathbb{R}, $$
theorems are proved about the equivalence of $L^\infty(L^q)$-norm of restrictions $u\mid X$ and $u\mid E$ for some relatively dense subset $E$ of $X$.
These theorems generalize well-known results of Cartwright and Plancherel–Polya.

UDC: 517.55


 English version:
Journal of Soviet Mathematics, 1993, 63:2, 202–211

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025