This article is cited in
16 papers
Estimates for Besov and Lizorkin–Triebel norms of solutions of the second-order linear hyperbolic equations
L. V. Kapitanskii
Abstract:
We study the nonhomogeneous hyperbolic equations
$$
\partial^2_tu+iB(t)\partial_tu+A(t)u=h\qquad{(1)}
$$
on
$[0,T]\times\mathfrak{M}$, where
$\mathfrak{M}=\mathbb{R}^n$ or
$\mathfrak{M}$ is a smooth closed manifold,
$A(t)$ and
$B(t)$ are the time-dependent pseudodifferential
operators on
$\mathfrak{M}$ of orders 2 and 1, resp. For the solutions of (1) we obtain the estimates of the form
\begin{multline*}
||\partial_t^lu(t,\cdot)||_{G_{p,q_2}^{r-l}}\leqslant c\left\{\sigma_{\nu,p,n}(t)(||u(0,\cdot)||_{E_{p',q_1}^{r+\nu}}+\right.\\
+\left.||\partial_t u(0,\cdot)||_{E_{p',q_1}^{r+\nu-1}})+\int_0^t\sigma_{\nu,p,n}(t-\tau)||h(\tau,\cdot)||_{E_{p',q_1}^{r+\nu-1}}d\tau\right\}
\end{multline*}
with arbitrary real
$r$ and integer
$l\geqslant0$, where
$G.^\cdot,.$ and
$E.^\cdot,.$
are the corresponding Besov spaces
$B.^\cdot,.(\mathfrak{M})$ or Lizorkin–Triebel spaces
$F.^\cdot,.(\mathfrak{M})$.
The admissible choice of these spaces
as well as the choice of the scalar function
$\sigma_{\nu,p,n}(t)$ depends
on the values of
$n$,
$\nu$,
$p$,
$q_1$,
$q_2$ and “the Brenner's number”
$m$,
defined by the principal symbols of operators
$A(0)$ and
$B(0)$.
Another class of estimates obtained in this paper, the
estimates of the form
$$
\left(\int_0^T ||\partial_t^lu(t,\cdot)||_{G_{p,q_1}^{r-l}}^{q_2}dt\right)^{1/q_2}\leqslant c\left\{||u(0,\cdot)||_{H^s}+||\partial_tu(0,\cdot)||_{H^{s-1}}+\int_0^T||h(t,\cdot)||_{H^{s-1}}dt\right\},
$$
characterize the space-time integrability properties and the
“smoothing” (for
$t>0$) of the solutions of (1).
UDC:
517.956.3