RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1989 Volume 171, Pages 174–181 (Mi znsl4476)

This article is cited in 1 paper

On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids

A. P. Oskolkov


Abstract: It is proved that for nonstationary equations of motions of linear viscoelastic fluids which obey the reological equation
$$ \left(1+\sum_{l=1}^L\lambda_l\frac{\partial^l}{\partial t^l}\right)\sigma=2\nu\left(1+\sum_{m=1}^M x_m\nu^{-1}\frac{\partial^m}{\partial t^m}\right)D, $$
the stationary system is the stationary Navier–Stokes system
$$ -\nu\Delta v+v_k\frac{\partial v}{\partial x_k}+\mathrm{grad}\, p=f(x), \quad\mathrm{div}\, v=0.\qquad{(*)} $$
It is proved that for “small” Reynolds numbers solutions of the initial boundary-value problems for the equations of motions of Oldroyd type fluids ($M=L=1,2,\dots$) and Kelvin–Voight type fluids ($M=L+1$, $L=0,1,2,\dots$) fends for $t\to\infty$ to the solution of the boundary-value problem for the stationary Navier–Stokes system ($*$).

UDC: 517.9


 English version:
Journal of Soviet Mathematics, 1991, 56:2, 2396–2402

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025