RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1988 Volume 174, Pages 122–131 (Mi znsl4514)

This article is cited in 1 paper

Diophantine complexity

Yu. V. Matijasevich


Abstract: It is well-known that every recursively enumerable set $S$ of natural numbers can be represented as $a\in S\Leftrightarrow \exists x\,\forall y\leqslant x\,\exists z_1,\dots,z_n$ ($D(a,x,y,z_1,\dots,z_n)=0$) (Davis normal form), as $a\in S\Leftrightarrow \exists z_1,\dots,z_n$ ($E_1(a,z_1,\dots,z_n)=E_2(a,z_1,\dots,z_n)$) (exponential Diophantine representation) and as $a\in S\Leftrightarrow \exists z_1,\dots,z_n$ ($D(a,z_1,\dots,z_n)=0$) (Diophantine representation). Each of the above three representations enables us to introduce different complexity measures both of the set $S$ as a whole and of accepting individual members of $S$.
The paper surveys some results by different authors connected with such kinds of complexity measures.

UDC: 510.52+511.5


 English version:
Journal of Soviet Mathematics, 1991, 55:2, 1603–1610

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024