RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 390, Pages 117–146 (Mi znsl4548)

This article is cited in 14 papers

A presentation of the average distance minimizing problem

A. Lemenant

Université Paris Diderot – Paris 7, U.F.R de Mathématiques, Paris, France

Abstract: We talk about the following minimization problem
$$ \min F(\Sigma):=\int_\Omega d(x,\Sigma)\,\mathrm d\mu(x), $$
where $\Omega$ is an open subset of $\mathbb R^2$, $\mu$ is a probability measure and where the minimum is taken over all the sets $\Sigma\subset\overline\Omega$ such that $\Sigma$ is compact, connected, and $\mathcal H^1(\Sigma)\leq\alpha_0$ for a given positive constant $\alpha_0$.

Key words and phrases: average distance, shape optimisation, transportation network, regularity.

UDC: 519.853.7

Received: 04.02.2011

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2012, 181:6, 820–836

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025