RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 390, Pages 182–200 (Mi znsl4550)

This article is cited in 3 papers

The Monge problem in $\mathbb R^d$: Variations on a theme

Thierry Championa, Luigi De Pascaleb

a Institut de Mathématiques de Toulon et du Var U.F.R. des Sciences et Techniques, Université du Sud Toulon-Var, La Garde, France
b Dipartimento di Matematica Applicata, Universitá di Pisa, Pisa, Italy

Abstract: In a recent paper the authors proved that, under natural assumptions on the first marginal, the Monge problem in $\mathbb R^d$ for cost given by a general norm admits a solution. Although the basic idea of the proof is simple, it involves some complex technical results. Here we will give a proof of the result in the simpler case of uniformly convex norm and we will also use very recent results by other authors [1]. This allows us to reduce the technical burdens while still giving the main ideas of the general proof. The proof of the density of the transport set given in the particular case of this paper is original.

Key words and phrases: Monge–Kantorovich problem, optimal transport problem, cyclical monotonicity.

UDC: 519.852.33

Received: 01.06.2011

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2012, 181:6, 856–866

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024