RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 392, Pages 146–158 (Mi znsl4582)

This article is cited in 1 paper

Problems on the maximum of a conformal invariant in the presence of a high degree of symmetry

G. V. Kuz'mina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: The problem on the maximum of the conformal invariant
$$ 2\pi\sum_{k=1}^nM(D_k,a_k)-\frac2{n-1}\prod_{1\leq k<l\leq n}|a_k-a_l|, $$
for all systems of points $\{a_1,\dots,a_n\}$ and all systems $\{D_1,\dots,D_n\}$ of nonoverlapping simply connected domains satisfying the condition $a_k\in D_k$, $k=1,\dots,n$, is investigated. Here $M(D,a)$ is the reduced module of a domain $D$ with respect to a point $a\in D $. It is assumed that $n$ is even and systems of points $a_1,\dots,a_n$ under consideration have a high degree of symmetry.

Key words and phrases: reduced module of a domain, conformal radius of a domain, conformal invariant.

UDC: 511.3

Received: 30.09.2011


 English version:
Journal of Mathematical Sciences (New York), 2012, 184:6, 746–752

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025