RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 392, Pages 202–217 (Mi znsl4585)

This article is cited in 2 papers

On summatory functions for automorphic $L$-functions

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Let $\lambda_f(n)$ denote the $n$th normalized Fourier coefficient of a primitive holomorphic cusp form $f$ for the full modular group. Let $\Delta(x,f\otimes f)$ be the error term in the asymptotic formula of Rankin and Selberg for
$$ \sum_{n\le x}\lambda_f(n)^2. $$
It is proved that $\Delta(x,f\otimes f)=\Omega(x^{3/8})$ and
$$ \sum_{n\le x}\lambda_f(n^2)=\Omega(x^{1/3}). $$
Other summatory functions associated with automorphic $L$-functions are also studied.

Key words and phrases: authomorphic $L$-function, summatory function, omega result.

UDC: 511.466+517.863

Received: 18.04.2011


 English version:
Journal of Mathematical Sciences (New York), 2012, 184:6, 776–785

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024