RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 393, Pages 5–11 (Mi znsl4611)

This article is cited in 4 papers

Inverse source problem for the 1-D Schrödinger equation

S. A. Avdonina, V. S. Mikhaylovb

a Department of Mathematics and Statistics, University of Alaska Fairbanks, AK, USA
b St. Petersburg Department of V. A. Steklov Institute of Mathematics the Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We consider the inverse problem of determining a source in the dynamical Schrödinger equation $iu_t-u_{xx}+q(x)u=w(t)a(x)$, $0<x<1$, with Dirichlet boundary conditions and zero initial condition. From the measurement $u_x(0,t)$, $0<t<T$, we recover unknown $a(x)$ provided $q(x)$ and $w(t)$ are given. We describe also how to recover $a(x)$ and $q(x)$ from the measurements at the both boundary points.

Key words and phrases: inverse problems, Schrödinger equation.

UDC: 517

Received: 27.10.2011

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2012, 185:4, 513–516

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024