RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 394, Pages 20–32 (Mi znsl4629)

This article is cited in 1 paper

$\mathrm{SL}_2$-factorisations of Chevalley groups

N. A. Vavilov, E. I. Kovach

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: Recently Liebeck, Nikolov, and Shalev noticed that finite Chevalley groups admit fundamental $\mathrm{SL}_2$-factorizations of length $5N$, where $N$ is the number of positive roots. From a recent paper by Smolensky, Sury, and Vavilov it follows that elementary Chevalley groups over rings of stable rank 1 admit such factorizations of length $4N$. In the present paper, we establish two further improvements of these results. Over any field the bound here can be improved to $3N$. On the other hand, for $\mathrm{SL}(n,R)$, over a Bezout ring $R$, we further improve the bound to $2N=n^2-n$.

Key words and phrases: Chevalley groups, fundamental $\mathrm{SL}_2$, semisimple factorisations, Bezout rings, parabolic subgroups, bounded generation.

UDC: 512.5

Received: 30.06.2011


 English version:
Journal of Mathematical Sciences (New York), 2013, 188:5, 483–489

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024