RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 240, Pages 18–43 (Mi znsl463)

This article is cited in 11 papers

Law of large numbers and central limit theorem for Jordan normal form of large triangular matrices over a finite field

A. M. Borodin

M. V. Lomonosov Moscow State University

Abstract: We prove that for a typical stricly uppertriangular matrix of order $n$ over a finite field with $q$ elements the sequence of orders of Jordan blocks, divided by $n$, converges to the geometric progression $\{(q-1)q^{-k},\,k=1, 2,\dots\}$, $n\to\infty$. We also show that the distribution of orders for a finite number of Jordan blocks is asymptotically normal. The corresponding covariance matrix is calculated.

UDC: 519.214.7

Received: 15.10.1996


 English version:
Journal of Mathematical Sciences (New York), 1999, 96:5, 3455–3471

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024