RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 394, Pages 209–217 (Mi znsl4634)

Forms of higher degree over certain fields

A. L. Glazmana, P. B. Zatitskia, A. S. Sivatskib, D. M. Stolyarova

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Electrotechnical University, St. Petersburg, Russia

Abstract: Let $F$ be a nonformally real field, $n,r$ positive integers. Suppose that for any prime number $p\le n$ the quotient group $F^*/{F^*}^p$ is finite. We prove that if $N$ is big enough, then any system of $r$ forms of degree $n$ in $N$ variables over $F$ has a nonzero solution. Also we show that if in addition $F$ is infinite, then any diagonal form with nonzero coefficients of degree $n$ in $|F^*/{F^*}^n|$ variables is universal, i.e. its set of nonzero values coincides with $F^*$.

Key words and phrases: field, scalar product, system of equations, polynomial.

UDC: 512.623.7

Received: 15.09.2011

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2013, 188:5, 591–595

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024