RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 394, Pages 262–293 (Mi znsl4637)

The algebraic analog of the Borel construction and its properties

I. B. Kobyzev

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: Suppose that $G$ is an affine algebraic group scheme faithfully flat over another affine scheme $X=\operatorname{Spec}R$, $H$ is a closed faithfully flat $X$-subscheme and $G/H$ is an affine $X$-scheme. In this case we prove the equivalence of two categories: left $R[H]$-comodules and $G$-equivariant vector bundles over $G/H$, and that this equivalence respects tensor products. Our algebraic construction is based on the well-known geometric Borel construction.

Key words and phrases: equivariant vector bundles, comodules, torsors, cotensor product, faithfully-flat descent, Borel construction.

UDC: 512

Received: 13.10.2011


 English version:
Journal of Mathematical Sciences (New York), 2013, 188:5, 621–639

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025