RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 395, Pages 71–74 (Mi znsl4642)

On two-isometries in finite-dimensional spaces

Kh. D. Ikramov

Moscow State University, Moscow, Russia

Abstract: A linear bounded operator $A$ in a complex Hilbert space $H$ is called a 2-isometry if $A^{*2}A^2-2A^*A+I=0$. In particular, the class of 2-isometries contains conventional isometries. It is shown that in the finite-dimensional case, the concept of a 2-isometry has no new content, that is, 2-isometries of a finite-dimensional unitary space are conventional unitary operators.

Key words and phrases: isometry, $m$-isometry, unitary operator, eigenvalues, singular values.

UDC: 512.64

Received: 25.06.2011


 English version:
Journal of Mathematical Sciences (New York), 2012, 182:6, 785–786

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024