RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 396, Pages 88–92 (Mi znsl4652)

Remark on locally constant self-similar processes

Yu. A. Davydov

Laboratoire P. Painlevé, University of Lille 1, Villeneuve d'Ascq, France

Abstract: Let $X=\{X(t),\ t\in\mathbb R_+\}$ be a self-similar process with index $\alpha>0$. We show that if $X$ is locally constant, and if $\mathbf P\{X(1)=0\}=0$, then the law of $X(t)$ is absolutely continuous. The applications of this result to homogeneous functionals of a multi-dimensional fractional Brownian motion are discussed.

Key words and phrases: self similar processes, absolute continuity, fractional Brownian motion.

UDC: 519.2

Received: 19.10.2011


 English version:
Journal of Mathematical Sciences (New York), 2013, 188:6, 686–688

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024