RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 397, Pages 157–171 (Mi znsl4673)

On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening

M. Fuchsa, G. Zhangb

a Universität des Saarlandes, Fachbereich 6.1 Mathematik, Saarbrücken, Germany
b University of Jyväskylä, Dept. of Mathematics and Statistics, Jyväskylä, Finland

Abstract: Let $u\colon\mathbb R^2\to\mathbb R^2$ denote an entire solution of the homogeneous Euler–Lagrange equation associated to the energy used in the deformation theory of plasticity with logarithmic hardening. If $|u(x)|$ is of slower growth than $|x|$ as $|x|\to\infty$, then $u$ must be constant. Moreover we show that $u$ is affine if either $\sup_{\mathbb R^2}|\nabla u|<\infty$ or $\limsup_{|x|\to\infty}|x|^{-1}|u(x)|<\infty$.

Key words and phrases: plasticity, logarithmic hardening, deformation theory, entire solutions.

UDC: 517

Received: 20.09.2011

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2012, 185:5, 746–753

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024