RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 392, Pages 191–201 (Mi znsl4721)

This article is cited in 3 papers

On the distribution of fractional parts of polynomials

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: In the paper upper bounds for sums of the form
$$ \sum_{0<n\le N}\psi\big(f(n)\big), $$
where $f(x)$ is a polynomial and $\psi(x)=x-[x]-1/2$, are obtained.
The cases
$$ f(x)=\frac1\alpha x^2+\beta x+\gamma $$
and
$$ f(x)=\frac1\alpha x^3+\beta x^2+\gamma x+\delta $$
are considered, where $\alpha$ is a large positive number.
Weyl's method and V. N. Popov's reasoning (Mat. Zametki, 18 (1975), 699–704) are used.

Key words and phrases: fractional part, lattice point, Weil's method.

UDC: 511.466+517.863

Received: 18.04.2011


 English version:
Journal of Mathematical Sciences (New York), 2012, 184:6, 770–775

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024