RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 395, Pages 61–66 (Mi znsl4722)

How to distinguish between the latently real matrices and the block quaternions?

Kh. D. Ikramov

Moscow State University, Moscow, Russia

Abstract: Let a complex $n\times n$ matrix $A$ be unitarily similar to its entrywise conjugate matrix $\overline A$. If the unitary matrix $P$ in the relation $\overline A=P^*AP$ can be chosen symmetric (skew-symmetric), then $A$ is called a latently real matrix (respectively, a generalized block quaternion). Only these two cases are possible if $A$ is a (unitarily) irreducible matrix. The following question is discussed: How to find out whether the given $A$ is a latently real matrix or a generalized block quaternion?

Key words and phrases: unitary similarity transformation, latently real matrix, block quaternion, irreducibility.

UDC: 512.64

Received: 20.03.2011


 English version:
Journal of Mathematical Sciences (New York), 2012, 182:6, 779–781

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024