RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 395, Pages 75–85 (Mi znsl4724)

Products of orthoprojectors and a theorem of Crimmins

Kh. D. Ikramov

Moscow State University, Moscow, Russia

Abstract: A proof of the following result, due to T. Crimmins, is proposed: A matrix $A\in M_n(\mathbf C)$ can be represented as a product of orthoprojectors $P$ and $Q$ if and only if $A$ satisfies the equation $A^2=AA^*A$.

Key words and phrases: orthoprojector, invariant subspace, unitary quasidiagonalizable matrices.

UDC: 512.64

Received: 25.05.2011


 English version:
Journal of Mathematical Sciences (New York), 2012, 182:6, 787–792

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024