RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1990 Volume 181, Pages 24–64 (Mi znsl4727)

This article is cited in 12 papers

The Cauchy problem for a semilinear wave equation. III

L. V. Kapitanskii


Abstract: The Cauchy problem for a semilinear pseudodifferential second order hyperbolic equation of the form
$$ \frac{\partial^2}{\partial t^2}u(t,x)+iB(t)\frac\partial{\partial t}u(t,x)+A(t)u(t,x)+f(t,x;u(t,x))=0 $$
is studied. The results (presented in a previous author's paper, see Zapisky Nauch. Semin. LOMI, 1990, v. 182) on the existence and uniqueness of the global weak (energy class) solutions are revised. In the case of more regular initial data ($u(0,\cdot)\in H^{s+1}$, $\partial_t u(0,\cdot)\in H^s$, $0<s\leqslant2$) the respective regularity of weak solutions is proved.

UDC: 517.957


 English version:
Journal of Soviet Mathematics, 1992, 62:2, 2619–2645

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024