RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1990 Volume 181, Pages 146–185 (Mi znsl4731)

This article is cited in 6 papers

Nonlocal problems of the theory of the equations of motion for Kelvin–Voight fluids

A. P. Oskolkov, R. D. Shadiev


Abstract: The following nonlocal problems for the threedimensional equations of motion of Kelvin–Veight fluids (14) are studied: global classical solvability on the semiaxis $\mathbb{R}^+$ initial boundary-value problem (14), (15) in the class $W^1_\infty(\mathbb{R}^+;W_2^2(\Omega)\cap H(\Omega))$; the principle of linearized stability and stability of steady solutions and time periodic solutions; global existence theorem of time periodic solutions of equations (14) in the class $W^1_\infty(\mathbb{R}^+;W_2^2(\Omega)\cap H(\Omega))$ with time periodic external force $f(x,t)\in L_\infty(\mathbb{R}^+;L_2(\Omega))$.

UDC: 517.9


 English version:
Journal of Soviet Mathematics, 1992, 62:2, 2699–2723

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025