An operator approach to weighted norm inequalities for singular inegrals
S. R. Treil'
Abstract:
A new approach to weighted norm inequalities for singular integral operators is developed. This appoach uses Hilbert space methods of Operator Theory.
Theorem. Let
$R_1$ be a positive operator in
$L^2(\mathbb T)$ with domain
$\operatorname{Dom}R_1$ such that
$\operatorname{Ker} R_1=\{0\}$, $0<\inf_n\|R_1z^n\|\leqslant\sup_n\|R_1z^n\|<+\infty$, and $\inf_n\operatorname{dist}(\|R_1z^n\|^{-1}\cdot R_1z^n, Z(R_1z^n, k\ne n))>0$. Then there exists an operator
$R_2$ satisfying 1. $\|R_2(\sum_{j\leqslant k\leqslant n}\hat f(k)z^k)\|\leqslant c\cdot\|R_1f\|$; 2.
$\inf_n\|R_2z^n\|>0$; 3. $\inf_n\operatorname{dist}(\|R_1z^n\|^{-1}\cdot R_1z^n, Z(R_1z^n, |k|<|n|))>0$.
In case the system
$\{Z^n\}_{n\in\mathbb Z}$ is fundamental in
$\operatorname{Dom}R_1$ with respect to the graph norm $\|f\|^2_\Gamma\overset{\text{def}}{=}\|f\|^2+\|R_1f\|^2$ the conclusion of the above theorem can be strengthened: 4.
$R_2$ is a bounded positive operator.
If in addition
$\sup_{n\geqslant0}\|R_1S^nR_1^{-1}\|<\infty$,
$S$ being the shift operator, i. e.
$Sf=z\cdot f$, then
$R_2$ is multiplication by a positive function
$v$. This theorem generalizes the well-known Koosis theorem.
UDC:
517.98+
517.968