RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 240, Pages 268–279 (Mi znsl478)

This article is cited in 7 papers

Distributions of the mean values for some random measures

N. V. Tsilevich

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $\tau$ be a probability measure on $[0,1]$. We consider a generalization of the classic Dirichlet process – the random probability measure $F=\sum P_i\delta_{X_i}$, where $X=\{X_i\}$ is a sequence of independent random variables with the common distribution $\tau$ and $P=\{P_i\}$ is independent of $X$ and has the two-parameter Poisson–Dirichlet distribution $PD(\alpha,\theta)$ on the unit simplex. The main result is the formula connecting the distribution $\mu$ of the random mean value $\int x\,dF(x)$ with the parameter measure $\tau$.

UDC: 519.217+517.986

Received: 15.12.1996


 English version:
Journal of Mathematical Sciences (New York), 1999, 96:5, 3616–3623

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024